Define the average life of a radioactive substance.
A radioactive nucleus $A$ has a single decay mode with half-life $\tau_A$. Another radioactive nucleus $B$ has two decay modes $1$ and $2$. If decay mode $2$ were absent, the half-life of $B$ would have been $\tau_A / 2$. If decay mode $1$ were absent, the half-life of $B$ would have been $3 \tau_A$. If the actual half life of $B$ is $\tau_B$, then the ratio $\tau_B / \tau_A$ is
Half-life of a radioactive substance is $20\,minute$ . The time between $20\%$ and $80\%$ decay will be ......... $min$
The initial activity of a certain radioactive isotope was measured as $16000\ counts\ min^{-1}$. Given that the only activity measured was due to this isotope and that its activity after $12\, h$ was $2000\ counts\ min^{-1}$, its half-life, in hours, is nearest to
A radioactive sample consists of two distinct species having equal number of atoms initially. The mean life time of one species is $\tau$ and that of the other is $5 \tau$. The decay products in both cases are stable. A plot is made of the total number of radioactive nuclei as a function of time. Which of the following figures best represents the form of this plot
The decay constant of the end product of a radioactive series is